35 research outputs found

    Flow Patterns in Three-Dimensional Laryngeal Models

    No full text

    Comparison of SPECT aerosol deposition data with a human respiratory tract model

    No full text
    Three-dimensional (3D) radionuclide imaging provides detailed information on the distribution of inhaled aerosol material within the body. Analysis of the data can provide estimates of the deposition per airway generation. In this study, two different nebulizers have been used to deliver radiolabeled aerosols of different particle size to 12 human subjects. Medical imaging has been used to assess the deposition in the body. The deposition pattern has also been estimated using the International Commission on Radiological Protection (ICRP) empirical model and compared to values obtained by experiment. The results showed generally good agreement between model and experiment for both aerosols for the deposition in the extrathoracic and conducting airways. However, there were significant differences in the fate of the remainder of the aerosol between the amount deposited in the alveolar region and that exhaled. The inter-subject variability of deposition predicted by the model was significantly less than that measured, for all regions of the body. The model predicted quite well the differences in deposition distribution pattern between the two aerosols. In conclusion, this study has shown that the ICPR model of inhaled aerosol deposition shows areas of good agreement with results from experiment. However, there are also areas of disagreement, which may be explained by hygroscopic particle growth and individual variation in airway anatomy

    Analytical technique to recover the third dimension in planar imaging of inhaled aerosols: (1) impact on spatial quantification

    No full text
    An analytical algorithm is described for converting planar scintigraphic images of aerosol distributions in the lungs to an equivalent three-dimensional (3D) representation. The recovery of volumetric information should benefit regional quantification. The technique has been validated using simulated planar images of eleven known aerosol distributions in ten realistic lungs. Global and regional 3D parameters, such as the total activity deposition (A), the penetration index (PI) and the relative penetration index (rPI), were quantified on the planar images and on their 3D representation. Random and systematic errors of the estimation were measured. Finally, the performance of planar imaging was compared with that of single-photon emission computed tomography (SPECT). SPECT images were simulated for the same aerosol distributions in the same subjects and quantified for A, PI, and rPI. The systematic errors in A, PI and rPI obtained from planar imaging were 8.9%, 64.8%, and 54.1%, respectively, using the two-dimensional (2D) analysis; they improved significantly to 4.4%, 19.0%, and 25.5% with the 3D analysis (p < 0.01). The corresponding values for SPECT were 5.2%, 9.8%, and 15.7%, significantly better for PI and rPI (p < 0.01). The random errors of A were similar for all techniques being about 5%; those of PI and rPI measurements were significantly higher for planar imaging (?14%) than SPECT (?8%). In conclusion, 3D spatial parameters can be derived from planar imaging that are significantly more accurate in characterizing different aerosol depositions than their 2D counterpart. However, the errors remain significantly higher than with SPECT

    Comparison of SPECT aerosol deposition data with twenty-four-hour clearance measurements

    No full text
    Three-dimensional (3D) radionuclide imaging provides detailed information on the distribution of inhaled aerosol material within the body. Analysis of the data can provide estimates of the deposition per airway generation. Information on regional distribution of deposited aerosol can also be obtained from 24-hour clearance measurements. In this study, a nebulizer was used to deliver a radiolabeled aerosol to nine human subjects. Single photon emission computed tomography (SPECT) has been used to assess the distribution of aerosol deposition per airway generation. The deposition pattern was also estimated using measurements of the aerosol remaining in the lung 24 h after inhalation. The error in the SPECT value was assessed by simulation and that in the 24-h clearance value by repeat analysis. The mean fraction of lung deposition in the conducting airway (CADF) from SPECT was 0.21. The corresponding 24-h clearance value was 0.23. These values were not significantly different. There was a weak but non-significant correlation between the SPECT and 24-h measurements (r = 0.49). The standard error of the difference was 0.11. The corresponding errors on the SPECT and 24-h clearance measurements were 0.04 and 0.05, respectively. There was no systematic difference between the values of conducting airways deposition obtained from 24-h measurements and SPECT. However, there were random differences on individual subjects, which were larger than the estimated measurement errors
    corecore